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Abstract. The thermodynamic limit of the dynamical density and spin-density two-point
correlation functions for the spin Calogero—Sutherland model are derived from Uglov’s finite-
size results. The resultant formula for the density two-point correlation function is consistent with
the previous conjecture on the basis of the minimal number of elementary excitations.

1. Introduction

Inrecentyears, a considerable number of studies have been made&ahfigspin Calogero—
Sutherland (CS) model [1, 2]. This model describeg @article system on a circle of length

L interacting with the inverse-square type potential. Each particle is labelled by its coordinate
x; and spin withN¥ (> 1) possible values. (WheN = 1, this is the CS model [3,4].) The
Hamiltonian of the model is given by

"5 2 »

H=3Y o (1) X et ®
— 0x; L 1<iz < SIN T —x;)

whereg is a coupling parameter arRj; is the spin exchange operator for partidlesd;. In

this paper, we tak& = 2 andg to be a positive integer.

A lot of intriguing results have been obtained in connection with the spin CS model. In
particular, the eigenfunctions of the spin CS model have been explicitly constructed and then,
using these properties, the dynamical correlation functions of this model were computed. For
B = 1 which is the simplest nontrivial case, the hole propergator of th€2) spin CS model
(with finite n and in the thermodynamic limit) has been calculated by Kato [5]. He also gave a
conjectural formula for the arbitrary integer coupling case. Using the Jack polynomials with
prescribed symmetry [6, 7], this conjecture was recently confirmed by Kato and one of the
authors [8]. On the other hand, introducing the new class of orthogonal polynomials [9, 10],
exact results have been obtained by Uglov [10]. He computed the dynamical density and
spin-density two-point correlation functions of tl§é&/ (2) spin CS model with finite:. In
[11], Kato et al have studied the construction for the dynamical correlation functions of the
SU(N) spin CS model in the thermodynamic limit. We gave the formula for the density two-
point correlation function in the thermodynamic limit and checked the consistency with the
T CREST researcher: Japan Science and Technology Corporation (JST), Kawaguchi 332-0012, Japan. E-mail
addressyam@cmptO1.phys.tohoku.ac. jp
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predictions from conformal field theory [12]. However, the relation between Uglov's work
and ours is missing.

In this paper, from Uglov’s formulae for the dynamical correlation function of the spin CS
model, we take the thermodynamic limit which is technically nontrivial. For the density
two-point correlation function, we prove our previous result in the thermodynamic limit
microscopically.

Here, we give our main results together with those of the work in [5, 8]. We introduce the
following notations: for non-negative integersb andc,

a b c
E(w,v,w;a,b,c)= Zep(u,-) +Zeh(vj) +Zeh(wk) (2)
Pu,v,w;a,b,c)= |: (2/3+1)Zu1+2v1+2wk] )
I(a, b, c)[+] =l_[/ duin/ dvjl_[/ dwy (¥)| Fg(u, v, w; a, b, o)? (4)
i=171 j=1v-1 k=1v-1

where pg is the density of particles, variables = (uq,...,u,), v = (v1,...,v,) and

w = (wy, ..., w.) represent the normalized momenta of quasiparticle with@piuasiholes
with spin—o ando, respectively§ = +1 5)- The quasiparticle and quasihole dispersions are
introduced by

1 2

&) = @8+ 1% (52) 02— D (5)
1

e = @843 () 1 (6)

respectively. The functio is defined by

Fg(u,v,w;a,b,c) = ( H (v; — vj)gh l_[ (w; — wj)gh Hl_[(vl - wj)g'3>

1<i<j<h 1<i<j<ce i=1j=
(- e
i=1j i=1
c -1
% H(l _ vjz)u—gﬁ)/z H(l _ w}g)<1—gﬁ>/2> @)
j=1 k=1
where
=p+1 gh=(B+1/2B+1) g =—B/(2B+1D). ®)

The retarded Green function [5, 8], density and spin-density two-point correlation
functions can respectively be written as the following form:
(W (x, )Y (0,00) = AB)I (0, B+ 1, B)[(rpo/2)e POALP=EQLLA=OD] 9)
(p(x,1)p(0,0)) = B(B)I (L, B+ 1, B[P(L B +1, B)?cosP(L, B +1, f)x)e ¢ HA1A1]
(10)
(s(x,)5(0,0)) = C\(B)I (L, B, B+ D(mpo/2)? COIP(L, B, B + Dx)e £ LA+
+Ci (B (1, B+2, B — D(po/2)? cOSP(L, B +2, B — Dx)e E@A+2A-D1]
(11)
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where; = (7(28 + 1) po/2)? is the chemical potential and we use the conven[iﬁ)gl(*)ﬂ.
Constant factors in the above formulae are defined by

Ap) = WD(ﬂ) (12)

B(p) = WD('B) (13)
1

G = WD(,B) (14)

Cu(B) = p D(B) (15)

4r22B+ D1 B +2
where, using the gamma functidi(z), the constanD () is given by

1 Fr((B+D/2B+1)
PB =+ L rgiase

The paper is organized as follows. In section 2, we recall Uglov's results about the
dynamical correlation functions of tt$&/ (2) spin CS model. In section 3, first, we examine the
excitation contents of the intermediate states of the dynamical correlation functions. Second,
taking the thermodynamic limit, we derive the formulae (10) and (11). The conclusion is
presented in section 4. Appendix A contains the proof of the statement in section 3.1. In
appendix B, we give the examples of the explicit formulae of the building blocks for the
dynamical correlation functions.

(16)
j=1

2. Uglov’s formulae for the dynamical correlation functions

In this section, we fix notations and then recall Uglov's exact results for the dynamical
correlation functions [10]. We only give the final results of Uglov’s paper. For details, see [10].

2.1. Notations

In Uglov’s formulation, the states of the (transformed) Hamiltonian are labelled by the coloured
partitions. A brief mathematical preliminary here may be in order. We fix notations which
will be to the fore in this paper (see [13,10]). For a fixed non-negative integéet

Ay = {2 = A, A2, ..., h) € (Zx0)' M = A2 = --- > A} be the set of all partitions
with length less or equal te. The weight of a partitioh. = (11, A, ..., A,) is defined by

[A| = Y%, A;. A partition can be represented by a Young diagram. For example, the partition
A= (4,3,1) is expressed as

A=

When there is a square in thid row andjth column ofx, we write (i, j) € A. The conjugate
of a partition = (A1, A2, ..., A,) is the partitiomt” = (A1, A5, ..., )JM) whose diagram is the
transpose of the diagram For instance, ik = (4, 3, 1), then)’ = (3, 2, 2, 1):

M=
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LetA = (A1, A2, ..., A,) be a partition. For a squase= (i, j) € A, the numbers
a(s) = /\/,' - ] fZ’(S) = j—1 (17)
I(s) =A% —1i I's)=i—-1
are called arm-length, coarm-length, leg-length, and coleg-length, respectively:
1 |
l/
l
~ld'|>|s|—|a|—|—
A= 1
I
/
I
1
Also the numbers
c(s)=d'(s)=l'(s)=j—i (18)
h(s):a(s)+l(s)+1:)»,-+)»’j—i—j+1 (19)
are called content and hook-length, respectively.drarC, their refinements are defined by
cs;a)=d(s)—al'(s)=j—1—a@ —1) (20)
h(s;0) =a(s) +1+al(s) =1 — j+1+a(d; —i) (21)
Ri(sia) =a(s)+al(s)+1) =1 —j+a@, —i+1). (22)
Moreover we define the following numbers:
d(s; @) = hj(s; a)hl(s: @) (23)
'(s) + = j—1+ —i+1
e(s: o) = a'(s) +a(n —1'(s)) _ /= a(n l )' (24)
a@)+1l+an—10()—1) jtam—1i)

We recall a colouring scheme of diagrams. (Here we only need a colouring by two

colours, white and black, since we consider the case Mith 2.) For a partitiork, we define
two subsets ok by W, = {s € Alc(s) = 0mod 2 andB; = {s € Alc(s) = 1 mod 3.
We call the colour ofs € A white (black) ifs € W, (¢ B;), and call. = W, U B, the
coloured partition. (Notice thatl, 1) € W, (if A # &).) For example, il = (4, 3, 1), then
W, = {[_]in the following diagrar, andB; = {[ e |in the following diagran

A=le °

We define an another subsetioby H,(1) = {s € A|lh(s) = 0 mod 3J. For example, if
L = (4,3,1), thenH>(1) = {{«]in the following diagran

NNEE

A=|x|x
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2.2. Dynamical correlation functions

We now recall Uglov’s formulae for the dynamical correlation functions [10]. We take the
number of particleg to be an even number such thg® is odd [10]. In Uglov’s formalism,

the states of the CS Hamiltonian are labelled by the coloured partitions. First of all, the total
energy with respect to the transformed Hamiltonian, total momentum, and {ctahponent

of spin for the coloured partitioh are respectively given by:

£ = 2 (Z N (a6 =y 0+ 2 — Dy + DIW (25)
A—E(T) ny(A) — yny(d) 5((n )y + DIW;i]
2
P= Wi (26)
Sy, = Wil — |By] (27)
wherey = 28 +1(e Z-), and
nw) =Y _1'(s) (28)
seW,
ny(X) = Z a'(s). (29)
seW,

Here, for any subset C A, we denote byu| the number of squares ji.
Next, the building blocks for the main factors of the dynamical correlation functions are
defined as follows: for a coloured partitiane A,,,

X, = 1_[ c(s; )/)2 (30)
seW;\{(1,1)}

v, = [] ds:iw (31)
sEHo ()

Z, = l_[ e(s; y). (32)
SEW;\

For the system with Hamiltonian (1), we denote the ground state expectation value of the
operatorO by (O0),. Then, the (ground state) dynamical density and spin-density two-point
correlation functions are respectively given by [10]

4 _ i
(o(x,10)p(0,0)), = — > |PPX, Y Z,e7 " cosx P) (33)
T A€A,: coloured partition
|A]:even
SA=0
[Wil=1Hz2(M)]

(s(x,1)s(0,0)), = o X, Y, 1Z,e7"E cogx Py) (34)

LeA,:coloured partition
|Al: odd

S =41
[Wyl=|Hz2(1)|+1
wherep(x, t) ands(x, ) are the Heisenberg representations of the reduced density operator
p(x) = Y ! ,8(x —x;) —n/L and thez-component of spin-density operatotx) =
Y 8(x — xi)07 /2, respectively. Here; is thez-component of Pauli matrices.

3. Thermodynamic limit of the dynamical correlation functions

In this section, we take the thermodynamic limit of Uglov’s exact formulae (33) and (34).

t The formula forE, in [10] has a typographical error.
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First, we determine the excitation contents of the intermediate states for the dynamical
correlation functions (33) and (34). Second, we rewrite the formulae (33) and (34) in
terms of parameters which correspond to the elementary excitations. Finally, we take the
thermodynamic limit.

3.1. Intermediate states

In order to take the thermodynamic limit, we must determine the excitation contents of the
intermediate states for the dynamical correlation functions (33) and (34).

Except for the factoi; which comes from the matrix element of the local operators, the
factors in the sums of the right-hand side of (33) and (34) are non-zero for @herefore,

a summand in the sums of the right-hand side of (33) and (34) is non-zero if and only if
X, # 0. From the definition, itis easy to see thgt # 0 < (2, y +1) ¢ A [10]. (Notice that

y =2B+1€ Z.¢.) Asis the spinless case [14, 15], this condition has the following physical
interpretation: the intermediate states contributing to the dynamical correlation functions (33)
and (34) have one quasiparticle gnduasihole excitations. We will see that these elementary
excitations have th8U (2) spin degrees of freedom. The above condition together with the
conditions on the sums in the formulae (33) and (34) determine the intermediate states.

We parametrize the intermediate states of the correlation functions (33) and (34). For this
purpose, we introduce some notations. In consideration of above observation, we define the
subset ofA,, by AY’ = {x € A,|(2, y +1) ¢ A}. Thatis, a partition. € A}’ hasy columns
and one ‘arm’. For a partition = (A1, A2, ..., A,) € AY’, we introduce the notatioh =
(AL A%, ., A;; r), which consists of columns and one ‘arm’. Hete= A; —y. (If A1 < y,
thenr = 0.) For example} = (13,5,5,5,4,4,4,2,2,1) = (10,9,7,7,4;8) € A®:

Using these notations, we can state that the intermediate states for the density two-
point correlation function (33) are coloured partitionss A with even weight,S;, = 0
and |W,| = |H2())|. We call these coloured partitions the d—d admissible. Similarly,
the intermediate states for the spin-density two-point correlation function (34) are coloured
partitions) € A’ with odd weight,S; = +1 and|W;| = |H>(%)| +1. We call these coloured
partitions the s—s admissible.

The above conditions on the intermediate states of dynamical correlation functions are
rather complicated. Technical difficulty in taking the thermodynamic limit comes from these
complicated conditions. Then, in the following, we simplify the conditions for d—d and s-s
admissible coloured partitions. For this purpose, we introduce more notations.

Forv = (vi,...,v41) € {0,1}*%*Y, we define two subsets (v) and I»(v) of
I={1....y}by
. [ A+=D))2, if vy41=0
I]_(U) - {J € {1? MR y}'”] - { (1 _’_(_1)/—]_)/27 If Vy+l — 1 (35)
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L) =1\ h(v). (36)
y+1times
Forexample, i = (1,1, ...,1),thenly(v) = {j € I|j : odd} andl>(v) = {j € I|j : even.
We introduce the functiop : AY’ —> {0, 1}*¥*D py
pA)y =00, ..., o()»;), o(r)) if A={RL..., )\;,; r)

whereo (a) = 0 (1) if a is even (odd). We cap (1) the parity ofr € AY.
It can be easy to show that, for a coloured partitore A\’ with parity p(A) =
(U]_, e v]/+l)l

y+l
S, = Wil = Byl =) (=) v, (37)
j=1
Using these formulae, we have
5= s#neon=17"" (38)
A T B T TS

Here, for a sefi, #A denotes the number of elements. Moreover, we can show thatgaox,,
with even (resp. odd) weight,

S, =0(respt 1) & |W,| = |Ha(M)] (resplHo(M)| + 1). (39)

The proof of the statement (39) is given in appendix A. The statements (38) and (39) are
essential to taking the thermodynamic limit.

From the above statements, we see that a coloured paﬂtittonfl”) is the d—d admissible
if and only if |A] is even and #(p (1)) = B + 1. Similarly, a coloured partition AL is
the s—s admissible if and only fif| is odd and #,(0 (%)) = B or 8 + 2. The s—s admissible
coloured patrtitions are divided into two types which are characterizedify &)) = B
or 8 +2. We call former type | and the latter type II. TIsé/(2) spin degrees of freedom
of the elementary excitations are assigned as follows. For an admissible coloured partition
A= (AL, .. Ar) € A with parity p(A) = (v1, ..., vy+1), the spin of quasiparticle i§
(resp.—%) if v,+1 = 0 (resp. 1). On the other hand, the spin of quasihole correspondk}g to
is 2 (resp.—3) if vy,+1 = 0andj € L(p())) or v,41 = L andj € I1(p(R)) (resp.vy+1 = 0
andj € Ii(p(1)) orv,+1 = Landj € I(p(1))).

Now, we can determine the excitation contents of the intermediate states for the dynamical
correlation functions. The excitation contents of the intermediate states for the dynamical
density two-point correlation function is given by the following set of quasiparticle and
quasiholes:

one quasiparticle with spis
B + 1 quasiholes with spir-o (40)
B quasiholes with spia

wheres = :I:%. This is consistent with the result in [11]. Similarly, the excitation contents of
the intermediate states for the dynamical spin-density two-point correlation function is given
by the following sets of quasiparticle and quasiholes:

one quasiparticle with spis
B quasiholes with spip-o (41)
B + 1 quasiholes with spia
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and
one guasiparticle with spin
B + 2 quasiholes with spir-o (42)
B — 1 quasiholes with spia.
It is remarkable that two types of the set of the elementary excitations contribute to the

dynamical spin-density two-point correlation function.
For later convenience, using (38) and (39), we rewrite (33) and (34) as

4
<,O()C, t)p(07 0))11 = F

v=(v1,...,v+1)€{0, 1pxr+D

#1(v)=p+1
2 -1 —ItE;
X P X,Y, “Z;e cogx P, 43
A
1eA’: coloured partition
|A]: even
p()=v
-1 —itE;
(50, 030, 000 = o7 > > XY 1Z,e7"F cogx P,)
v=(01,...,y+1) €{0, 1} 3 e AP: coloured partition
#L(v)=p |A|: odd
pO)=v
1 )
+ﬁ Z Z X;\Yk_lz;\ef”E)‘ COixP;\).
v=(1,....0y+1) €{0,1}*"*D 2 e A coloured partition
#11(v)=p+2 |A|: odd
p(R)=v
(44)

The first summation in the right-hand side of (43) is taken oveT 2.1 /» different parities,
since

2,Ciperyjz = #v = (v1, ..., vy41) € (0, DR (v) = g+ 1), (45)
Similarly, the first summations of the first and second line in the right-hand side of (44) are

respectively taken over,Z,_1),2> and 2,C,+3) 2 different parities.
3.2. Quasiparticle and quasihole description of the dynamical correlation functions

To take the thermodynamic limit, our next task is to rewrite the formulae (43) and (44) interms
of parameters which correspond to the momenta of quasiholes and quasiparticle (see [14, 15]).

We have already introduced such parameters,i.es (A1, 15, ..., A);r). The quantities
A1, Ay, ..., A, andr are respectively related to the momenta of quasiholes and quasiparticle.
Although it can be possible to proceed the calculation by using the parameters
A A5, ..., A, andr, it is appropriate to introduce new parameters as follows. We define
the following numbers [10]:
w; (M) = #{s € ith row of A|s : white} (46)
w; (1) = #{s € jth column ofi|s : white}. (47)

We note that, using these numbers, we hg¥g| = Y7 w;(A) = 2;1:1 w;(X). Then,
instead ofA, A5, ..., )Jy andr, we adoptw; (1), ..., w, (1), andp = wi(r) — y as the
parameters. These two sets of parameters are related by the formulae
2w;(\) -1 if j:odd,2’: odd
Ay =1 2w;(A) if 2% even (48)
2w;(A) +1 if j:evena: odd
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and

(49)

2p+1 if r:odd
| 2p if r:even.

Let us rewrite the formulae for the dynamical correlation functions (43) and (44) by using

wi(}), ..., w, (1), andp. Firstof all, forx € A, we have

|M|—Zw,(x>—2w,<x>+p (50)
nu() =Y 1'(s) = Z w0 —w;WN+ > w;)* (51

seW; 1<jsy 2<jsy-1

Jj:odd jieven
)4

nW) =Y d() =Y (j—Dw;)+p(p+y). (52)

seW, j=1

Then, from the definitions (25) and (26), we obtain the formulaeZfoand P;.
Next we rewriteX;, Y, andZ,. For this purpose, following Ha [14], we decompose a
partition = (Al, Ao ..., ) € AY into three sub-diagranis= A, U B; L C, Where

={Lj)e AP 1<j <y} (53)
Bx ={(, HeAVIL<j <y, 2<i <)) (54)
Co={L ) eAVly+1<j< ) (55)

For example, ifv. = (13,5,5,5,4,4,4,2,2,1) = (10,9,7,7,4;8) € A®, thenA; = sub-
diagram which containsy|in the following diagram3, = sub-diagram which contairig|,
andC; = sub-diagram which contai@:

0 O[] ][H]

299

Ak Ak Ak Ak Ak AR
LAk Ak Ak AL Ak AR

L ai Ak Ak Ak Ak 2k Ak RS

>/o|o|o|o/o[o/®®

We denoteWp, = W, N Dy, Bp, = B, N Dy, andHyp, = H2(A) N D, for D = A, B,C.
(Notice that(1, 1) € W, (if A # @).)

For a coloured partitioh e A", we denoteXp, = [l,y, \(@) c(s; ¥)? and
YD;K = HSGHZ_D d(s; )/)fOfD A, B, C. ltisobviousthak; = XAAXB,\XCU Y, = Y_A) YB; YC

andZ, = Z, Zg, Zc,. Then, itis easy to show that, fare AY’,
Xa, =27 T2((y +D/2) (56)

)4
Xg, =& [T 2 /v) x [] TPw;0)) =G - 1)
Jj=1 1<jsy
j:odd
<[] TrPwo)+3—¢£G—1) (57)
2<j<y—1
jieven
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_ Pt +1)/2)

Xe = 58
“ T2((y +1)/2) (58)
D(p+(y+1)/2)
Yo, =2%T(p+1)————— "~ 59
o =2 TG D) )
Zu = ynrj-1 (60)
1Ky VIV
j:odd
4 D(n/2+&j — )0 (1/2 = w;(V) +£j +1/2)
BT AL T(/2+Ej — 1T (/2= w;(V) +£j — £ +1)
j:odd
5 D(n/2+&j — £+ /AT (/2 — w; (M) +&)) (61)
2 j<y1 DO/2+ENT (/2 = w; () +&j — & +1/2)
jreven
_ Tyn/2+ DL (yn/2+p+(y +1)/2) 62)

“ T Tn/2+( +D/2T(yn/2+p+1)
whereé = (2y)~1. Notice that we can derive all above formulae without fixing the parity
pA).

On the other hand, to derive the explicit forms)f andYs, for 1 € AY’, we must
fix the parity p(2). In fact, to write down the explicit forms df 4, andY,, we need more
complicated notations. However, for the purpose of taking the thermodynamic limit, the
necessary information are the sétgo (1)), I2(p(1)), and the quantities of orde?(n). We
see that, after replacing the elements of $etand I, appropriately, the thermodynamic limit
of Yp, andYp, with p(X) # p(1) coincide with each othe® = A, B). We do not give the
explicitforms ofY 4, andYp, for the general admissible coloured partitiarin appendix B, we
give the examples for some admissible coloured partitions. The thermodynamic liFit of
andYp, for general admissible coloured partitions are easily obtained from those examples.
Finally, we change the summation indices for the sums in the dynamical correlation
functions. For example, we rewrite the sum in the density two-point correlation function (43)

Ty v ¥y 5 -

V=010 e E(O LD P30 /23w () S 2wy, ()20 n/22 gy 0) >y, () 20
#1(n)=p+1

where{j;}/"T = Ii(p() = v) such thatjy > --- > jse and{ki}L, = L(p(A) = v) with

ky > > kg

3.3. Thermodynamic limit

In this section, we take the thermodynamic limit, ire> oo, L — oo with pg = n/L fixed.
Let us introduce the momentaandv; for j = 1,...,y of the quasiparticle and
quasiholes, respectively, by the formulae,
1p u+l
—— —>

— 64
yn 4 64)
(N S+
wi ) _, - 3 (65)
n
Then we have the thermodynamic limit of the energy and total momentum,
Y
E, — &= Zeh(v_i) +ep(u) (66)

j=1
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Y
Px—>7j=%|:;vj_)/u:| (67)
where
am =3 (7)Y a-y (68)
" 2\2
1 2
& =r*5 (52) 02— D (69)

We have adopted the normalization (64) and (65) ahdv; so that the Fermi points coincide
with {+1}.

Also, using the formula lim . I'(a +z)/ ' (a) = a*, we can obtain the thermodynamic
limit of XAYgle. In the following, we consider the case of density two-point correlation
function. In this case, we have

)4
XX 2y — L2 (ypo) T ((y + D/ [ [T E+ HT 20/ y)
j=1

y
x(u? — 1) D2T - vj?)é—l/Z l_[ (u—v;)~2
=1

J J€h(p()
_2(e+1/2 —2(6-1/2
IL TT wmw 1] o-w= o
s=1.2 j,kE(s(]/:()»)) Jel(p(M) kelz(p(M)
J<

for a d—d admissible coloured partitione A\ with the fixed parityp (1).

For each d—d admissible coloured partitioa AY with the fixed parityo (1), we replace
{Uj}jell(p()»)) and{vj}jeb(p()\)) by {Uj}jﬁ:!i_ such thatv; > -+ > Ug+1 and{wj}le such that
wy = -+ = wg, respectively.

In the thermodynamic limit, we rewrite the sums as integrals:

—2y ¥
— L"27p}
022wy (V) S 2wy, ()20 /22wy (M) > S, (1) 0

X / dvidvs. .. dvﬁ+1/ dw1dw,. .. dwg
12012022 2-1 1w w2 2wp>-1
(71)
-1
> L2ty [ (72)
—00

p=0

Note that, for each d—d admissible coloured partitiore A’ with the fixed parity
o(2), the energy, total momentun® and thermodynamic limit of the quantify;, ¥, *Z; are
invariant under the exchangge < v; and/orw, <> w;. Then, finally, after removing the order
on momenta, we arrive at the formula (10). This formula coincides with our previous result in
[11] up to the constant factor.

The formula (11) can be derived in the same way.

The essential part of the formulae (9)—(11) can be described by the furfgtioks is the
spinless case [14], we call the functifjp the minimal form factor of th§ U (2) spin CS model
(with integer coupling parameter). The physical interpretation of the minimal form factor has
been discussed in [11].
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4. Conclusion

In this paper, we have taken the thermodynamic limit of dynamical density and spin-density
two-point correlation functions of the spin CS model. We have obtained the exact formulae
(10) and (11) of the density and spin-density two-point correlation functions, respectively.
We have exactly shown that, with appropriate numbers of quasiparticles and quasiholes, the
dynamical correlation functions of the spin CS model can be described by the unique function
Fg (7) which is called the minimal form factor. These results are consistent with our previous
paper [11].
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Appendix A

In this appendix, we prove the following lemma.

Lemma. For a coloured partition. € A, with even (resp. odd) weighf; = O(resp.+1) <
[Wil = [H2(2)|(resp.|Hz(2)| + 1).

In this appendix, we do not assume thas even.

We introduce the notations. The partitian= (11, A,, ...) can be represented by the
notationr = (1m®2m®) )y wherem; (%) = #{j|A; = i} [13]. Using this notation, we
define the following transformations andz; for i € Z.o:

(Im®gma®)  ymi)=2 mi(L) =2

7oA = (AmWgme®) - mi®) oy (A1)
A m,(k) <2

A — (u(d)). (A.2)

That is,z; (/) is the following transformation: if there exist two rows (columns) which have
the same number of squarethent; (r/) removes these rows (columns), if not therfz/) is

the identity. IfA has even (odd) weight then batl{1) andz; (1) have even (odd) weights. We
introduce the special partitiot(k) € A, by

@ k=0
(k,k—1,...,1) =12 .. kY k=1,...,n.

The partitionss (k) for k = 0,1, ..., n are the fixed points of the transformationsand ;.
We see that, applying’s andrj/. 's sufficiently many times, any partitione A, is mapped to
one of§(k)'s. We denote the resultant mappingby A, — {8(k) |k =0,1,...,n}.

From the definition, the transformations ¢/ and r can be defined on the set of all
coloured partitions. For instance,

s(k) = { (A.3)

T =7“=5(2).
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We define the following numbers: for a coloured partitioa A,,, wb()) = |W,|—|B;|(= S5)
andwh(X) = |W,| — |H2(1)|. Itis easy to see that these numbers are invariant under the
transformations; andt/, i.e., wb(t; (1)) = wb(r), wb(zr/ (1)) = wb(r) and same formulae

for wh. Thereforewb(z (1)) = wb(A) andwh(t (1)) = wh()). Moreover, we have:

0 k=0

wh(S(k)) = {1 k=21—1 (1=12..) (A.4)
—I k=2 (1=12,..)
0 k=0

wh(8(k)) = { I? k=21—-1 (1=12..) (A.5)
12 k=2l (1=12..).

(Note thatH»(§(k)) = @ for allk.)
We define the subset, (5 (k)) of A, by

An(8(k)) = {1 € Aplt (1) = 8(k)}. (A.6)

It is important to note the following fact: i£ € A,(8(k)) thenwb(X) = wb(8(k)) and
wh()) = wh(8(k)). Therefore, from the formulae (A.4) and (A.%),,(8(k)) N A, (8(k)) =
@ if k #£ k'. This fact proves the lemma.

We have the following decomposition for the set of@louredpartitionsA ,:

An = I—IZ:OAW (S(k)) (A7)

We see that the set of all d—d (resp. s—s) admissible coloured partitions is g &E)) NAY
(resp.(A,(5(1) U A, (5(2)) N A).

Appendix B

In this appendix, we give examples of the explicit formula¥ay andYs, .
(a) Example for the d—d admissible coloured partition.
We consider the d-d admissible coloured partitione AY with parity p(A) =
y+1times
@€,1,..., 1). Inthis case/1(p(M)) ={j € I]j : odd} andl(p(1)) ={j € I|j : ever}. We
have the explicit formula fo¥ 4, andYp,

Yu =60 T /v +wj0) =3 -G -2)p/y +w;(\)—£G—1) (B
Je€hl(p()

Y
Ys, = E7T (A +1/y)/ 7 [ Te720

j=1
x 1_[ T(w;\) — &G — )T (w;(V) —&j +3)
Jeli(p)
<[] Twe)=&G -1 +3HMw;0) —&j+1)
jeh(p()

X l_[ [[(w; () — we ) + &k — )T (w;(A)
Jken ()

—weW) +Ek — j) — &+ DT (w; V) — we)
+e(k — ) +E+ HMw; (V) —weW) +EK( — )+ D]F
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<[] M) —we)+E(k — )T w;)
jkelap))
j<

—wp () +Ek — j) — &+ DT (w; () — we (W)

ik — j)+E+ DM w;() — we@) +EKk — j) + D]

x I1 [D(w; () = we) + &k = j) = DT (w; (W)
j€11(p(/\});12€lz(p()»))

—we(W) +E(k — j) — OITw; () — we (W)

+e(k— ) +& — DT (w,; (V) —we(W) +Ek — j) — D]

x I1 [T (w; (W) — we W) + &k — j) + T (w; (V)

J€l(p(M)).kel1(p (1))
Jj<k

—wp (W) +E(k — j) = £+ DT (w; X)) — wi(X)
+e(k — ) +E+ DT (w,; () —weW) +EKk — j) + ] (B.2)
(b) Example for the type | s—s admissible coloured partition.

We consider the type | s—s admissible coloured partitioa A with parity p(n) =
y times

f—/\q )
(1,1,...,1,0). Inthis case/1(p(n)) = {j € I|j : every andl>(p(w)) = {j € I|j : odd}.
The formula forY.,, is given by

Ya, =600 ] p/y+wj)+1/2—6G = D)(p/y +w;(W)+1-£j).  (B.3)
J€l(p(p)
The explicit form ofYp, is given by the same formula in (a) with replacement;@p (1)) and

I(p(A) by I(p(w)) andIi(p(w)), respectively.
(c) Example for the type Il s—s admissible coloured partition Finally, we consider the type

Il s—s admissible coloured partitione AY with parity
(r+3)/2 (r-3)/2
p(m=(0,101,...,0,1,00,1,0,1,...,0,1,0) ((y +3)/2: odo.

Inthis casel1(p(n)) ={1,...,8+2}andl(p(n)) ={B+3,..., 28 +1}.
We have the explicit formulae fdf,, andYj,

Ya, =9 [T (/v +wi) —€G —D)p/y +w;(n) + 3 — &)
J€hL(p(m)
j:odd
< [T w/v+wio+3—6G—-D)p/y +wjo)+1-&j))  (B.A)

Je€li(p(m)
jieven

Y
YB,, = $V+5l—w((1 + 1/)/)/2)*1/ HE72wj(n’)
j=1
< [T I T —&G—)rw;m)—¢&+3

s=1,2 jel(p(n)
dd

jio

< [T T[] T —&G-D+Hrw;m)—&i+1)
s=12 jel;(p(n)
jieven
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< [T T ‘) —wn)+Ek— i) w;o)
s=1.2 j.kel(p(m)
Jj<k
Jj,k:odd
—wi(n) + &k — j) — £+ DT w; () — we ()
+e(k — ) +E+ HT(w;(n) —we(n) +Ek — jH+ D] !
< [T T [Caa)—wer)+Ek— i) w;o)
s=1.2 j.kel(p(m)
j<k
J.k:even
—wi(n) +E(k — j) — £+ DT w; () — we (M)
+E(k — j)+&+ HT(w; () — we(n) +&Ek — j) + D]
< [T ] [C@a)—wdn)+Ek—j)—HTw;@)
s=1.2 j.kel(p(n)
Jj<k
Jj:oddk: even
—wi(n) + &k — j) — O (w; () — we(n)
+e(k — ) +EOT (w; () — we(n) +&k — j) + D]
< [T TI [Cwie)—we)+&k—j)+3 ;o)
s=1,2 j-kEZS(]/z(n))

J<
j:odd k:even

—wi(y) + &Gk — j) — & + DIIT (w; (') — wie(n)
+e(k— ) +E+ DT (w; () — wi(n) + &Kk — )+ ]
x [1 [T (w; (') — wie(n) + &k — j) + DT (w; ()

Jjeh(pm)),kel(p(n)
J,k:odd

—wi(n) +E(k — j) — £+ DT w; () — we ()
+e(k — ) +E+ HTw;() —we(n) +Ek — j)+ D]t

x I1 [T (w; (7) = we(n) + &k = j) + DT (w; (n)

Je€hi(pm),kelz(p(n)
Jj.k:even

—wi(n) +E(k — j) — £+ DT w; () — we ()
+E(k — j)+&+ DT (w; () — we(n) +E(k — )+ D]

x I1 [T (w; (7) = we(n) + &k — j) + HT(w;(n)

Jjelhi(pm),kelz(p(n))
j:odd k:even

—wi(n) + &k — j) — £+ DT (w; () — wi(n)
+e(k — ) +EOT (w; ) — we(n) +Ek — j) + ]
x I [C(w;(') — we() +Ek — j) + T (w; ()

Jeli(p(m),kelz(p(n))
j:even k:odd

—wp () +E(k — j) — £+ T (w; () — wi(n)
+e(k — ) +E+ DI (w;(n) —we() +EK — j)+ DL (B.5)
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